Basic differentials

$$v = \frac{ds}{dt} = \dot{s}$$

$$a = \frac{dv}{dt} = \dot{v}, \ a = \frac{d^2s}{dt^2} = \ddot{s}$$

After some manipulation:

$$v dv = a ds, \ \dot{s} d\dot{s} = \ddot{s} ds$$

Non-constant acceleration

Get s(t) and v(t) in different situations:

A/T:
$$a = a(t) = \frac{dv}{dt}$$

$$a(t) dt = dv \to \int_0^t a(t) dt = \int_{v_0}^v dv$$

$$\therefore v(t) = v_0 + \int_0^t a(t) dt$$

Similarly: $s(t) = s_0 + \int_0^t v \, dt$, and combining:

$$\therefore s(t) = s_0 + v_0 t + \int_0^t (\int_0^t a(t) \, dt) \, dt$$

(Do integral in 2 steps!)

A/V:
$$a = a(v) = \frac{dv}{dt}$$

$$t(v) = \int_0^t dt = \int_{v_0}^v \frac{1}{a(v)} dv$$

Then, solve for v(t) and integrate to obtain s(t). Alternatively, plug into v dv = a ds instead:

$$v dv = a(v) ds \to \int_{v_0}^v \frac{v}{a(v)} dv = \int_{s_0}^s ds$$
$$\therefore s(v) = s_0 + \int_{v_0}^v \frac{v}{a(v)} dv$$

to obtain expression without t.

A/S:
$$a = a(s)$$

$$v dv = a ds \rightarrow \int_{v_0}^v v dv = \int_{s_0}^s a(s) ds$$

$$\therefore v(s)^2 = v_0^2 + 2 \int_{s_0}^s a(s) ds$$
then, with $v(s) = \frac{ds}{dt} \rightarrow \int_0^t dt = \int_{s_0}^s \frac{1}{v(s)} ds$

$$\therefore t(s) = \int_{s_0}^{s} \frac{1}{v(s)} \, ds$$

Rearrange to obtain s(t) and then take derivative: v(t) = s'(t).

Constant acceleration $a = a_c$

$$s = s_0 + v_0(t - t_0) + \frac{1}{2}a_c(t - t_0)^2$$

$$v = v_0 + a_c(t - t_0)$$

$$v^2 = v_0^2 + 2a_c(s - s_0)$$

$$s = s_0 + \frac{v_0 + v}{2}(t - t_0)$$

Sign of a

Positive:

- 1. v > 0: speeding up
- 2. v < 0: slowing down

Negative:

- 1. v > 0: slowing down
- 2. v < 0: speeding up

Relative Motion

Only works in x-y; B/A is B with respect to A.

$$ec{r}_B = ec{r}_A + ec{r}_{B/A}$$
 $ec{v}_B = ec{v}_A + ec{v}_{B/A}$
 $ec{a}_B = ec{a}_A + ec{a}_{B/A}$

Rectangular (x-y)

Unit vectors: \hat{i} in +x and \hat{j} in +y

Projectile Motion

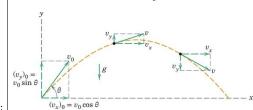
$$a_x = 0, \ a_y = -g$$

Therefore, using constant a equations above:

$$x = x_0 + v_{0_x}t \qquad y = y_0 + v_{y_0}t - \frac{1}{2}gt^2$$

$$v_x = v_{0_x} \qquad v_y = v_{0_y} - gt$$

where: $v_{0_x} = v_0 \cos \theta$ and $v_{0_y} = v_0 \sin \theta$



Normal-Tangential (n-t)

Unit vectors: $\hat{e_t}$ in $+\vec{v}$ direction and $\hat{e_n}$ towards center of curvature $(\hat{e_n} \perp \hat{e_t})$.

$$s = \rho \beta$$
, $v = \rho \dot{\beta}$ for constant ρ

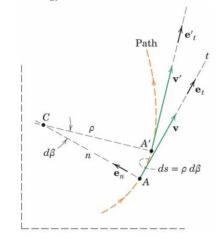
$$a_t = \dot{v} = \ddot{s}$$

$$\dot{z} \qquad \dot{z}^2 \qquad v^2$$

$$a_n = v\dot{\beta} = \rho\dot{\beta}^2 = \frac{v^2}{\rho}$$

$$a_t ds = v dv \text{ (from } a_t = \frac{dv}{dt}, \ v = \frac{ds}{dt})$$

Also, $a_t = \frac{d}{dt}(v = \rho \dot{\beta}) \rightarrow a_t = \rho \ddot{\beta} + \dot{\rho} \dot{\beta}$ to find $\dot{\rho}$



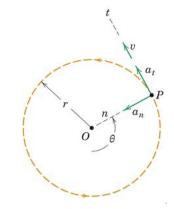
Circular Motion in n-t

 ρ becomes constant r, β becomes θ :

$$v = r\dot{\theta}$$

$$a_n = v\dot{\theta} = r\dot{\theta}^2 = \frac{v^2}{r}$$

$$a_t = \dot{v} = r\ddot{\theta}$$



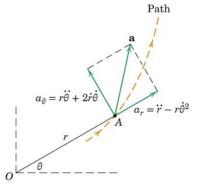
Polar $(r-\theta)$

Unit vectors: $\hat{e_r}$ in $+\vec{r}$ direction and $\hat{e_\theta}$ in $+\theta$ direction $(\hat{e_\theta} \perp \hat{e_r})$.

$$\vec{v} = v_r \hat{e_r} + v_\theta \hat{e_\theta}$$
, where $v_r = \dot{r}$

$$v_{\theta} = r\theta$$

$$\vec{a} = \vec{v} = a_r \hat{e_r} + a_\theta \hat{e_\theta}$$
, where $a_r = \ddot{r} - r\dot{\theta}^2$



Aside: unit vector manipulation

$$d\hat{e_r} = \hat{e_\theta} d\theta \qquad d\hat{e_\theta} = -\hat{e_r} d\theta$$

$$\frac{d\hat{e_r}}{d\theta} = \hat{e_\theta} \qquad \frac{d\hat{e_\theta}}{d\theta} = -\hat{e_r}$$

$$\hat{e_r} = \hat{\theta}\hat{e_\theta} \qquad \hat{e_\theta} = -\hat{\theta}\hat{e_r}$$

Circular Motion in r- θ

r becomes constant:

$$v_r = 0$$
 $a_r = -r\dot{\theta}^2$ $v_\theta = r\dot{\theta}$ $a_\theta = r\ddot{\theta}$

Note: same as in n-t, but $a_r = -a_n$ as θ and t directions same but r and n directions opposite.

Units & Symbols

 10^{12} Tera, 10^9 Giga, 10^6 Mega, 10^3 Kilo; 10^{-3} milli, 10^{-6} $\mu \rm{icro},~10^{-9}$ nano, 10^{-12} pico

- **U**: Work [J]
- T: Kinetic energy [J]
- V: Potential energy [J]
- $\vec{\omega}$, $\vec{\alpha}$: Angular vel. [rad/s], accel. [rad/s²]
- $\vec{\boldsymbol{G}}$ or $\vec{\boldsymbol{L}}$: Linear momentum $[kg \cdot \frac{m}{s}, N \cdot s]$
- \vec{H} : Angular momentum (point H_O , mass center H_G) $[kg \cdot \frac{m^2}{s}]$

$Constrained\ Motion\ (pulleys/blocks) \,|\, Linear\ Momentum\ and\ Impulse$

Each block needs own datum, measures position in direction of motion. Then, differentiate the parts of the rope $l_{\text{rope}} = \dots$

Kinetics $(\sum \vec{F} = m\vec{a})$

Forces:

- $W = \frac{Gm_1m_2}{r^2} = mg$
- N (always ⊥ to contact surface)
- $F_{f,s} \leq \mu_s N$, $F_{f,k} = \mu_k N$
- $F_e = -kx$

Curvilinear:

n-t: $\sum F_n = ma_n$, $\sum F_t = ma_t$, $\sum F_b = 0$ r- θ : $\sum F_r = ma_r$, $\sum F_\theta = ma_\theta$, $\sum F_z = m\ddot{z}$ (refer to kinematics for a_n , a_t , a_r , a_θ)

Work (all scalar!)

- Gravity: $-mq(y_2-y_1)$
- Constant applied force: $\int_{s_1}^{s_2} P \cos \theta \, ds$
- Spring: $-\frac{1}{2}k(s_2^2-s_1^2)$
- Constant friction: $-\mu_k N(s_2 s_1)$

Generally:

$$U_{1\to 2} = \int_{s_1}^{s_2} F\cos\theta_{F,ds} \, ds$$

Interpretation: U_N done by surface on object, $U_g \mid \text{Radius of curvature}$: done by gravity on object

Work-Energy (for problems w/F, Δs , v) $T_1 + \sum U_{1\to 2} = T_2$

Conservation of Energy $T_1 + V_1 + (\sum U_{1\to 2}) = T_2 + V_2$

Change in linear momentum is impulse.

$$\vec{G} = m\vec{v}$$
 and $\dot{\vec{G}} = m\dot{\vec{v}} = \sum \vec{F}$
 $\therefore \vec{G}_1 + \int_{t_1}^{t_2} \sum \vec{F} dt = \vec{G}_2$

Conserved if no external forces (impulses): $\sum G_1 = \sum G_2$, $\sum m_1 \vec{v_1} = \sum m_2 \vec{v_2}$

Angular Momentum

Moment of linear momentum about a point:

$$\begin{split} \vec{H_O} &= \vec{r} \times \vec{G} = \vec{r} \times m \vec{v} \\ |\vec{H_O}| &= r_O m v \sin \theta \text{ (in } \hat{k} \text{ dir.)} = r_O m v_\theta \\ \vec{H_O} &= \sum \vec{M_O} = \sum \vec{r_O} \times \vec{F} \\ \therefore &(\vec{H_O})_1 + \sum \int_{t_1}^{t_2} M_O \, dt = (\vec{H_O})_2 \end{split}$$

Conserved if no external moments: $\sum (H_O)_1 = \sum (H_O)_2$

Moments: $\vec{M_O} = \vec{r_O} \times \vec{F}$, $|\vec{M_O}| = Fd$

Systems of Particles

Kinetics

$$\vec{r_G} = \frac{\sum m_i \vec{r_i}}{m} \text{ (center of mass)}$$

$$\vec{r_G} = \frac{\sum m_i \vec{r_i}}{m} = \frac{\sum m_i \vec{v_i}}{m}$$

$$\vec{r_G} = \frac{\sum m_i \vec{r_i}}{m} = \frac{\sum m_i \vec{a_i}}{m} = \frac{\sum \vec{F_i}}{m}$$

$$\therefore \sum \vec{F} = m\vec{r_G} = m\vec{a_G}$$

Work and Energy

$$\sum (T_1)_i + \sum \int \vec{F}_i \cdot d\vec{r} = \sum (T_2)_i$$

Momentum and Impulse

$$\sum m_i(\vec{v_i})_1 + \sum \int_{t_1}^{t_2} \vec{F_i} dt = \sum m_i(\vec{v_i})_2$$

Math

Quadratic:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\rho_{xy} = \frac{[1 + (\frac{dy}{dx})^2]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} \text{ and } \rho_{r\theta} = \frac{[r^2 + (\frac{dr}{d\theta})^2]^{\frac{3}{2}}}{r^2 + 2(\frac{dr}{d\theta})^2 - r(\frac{d^2r}{d\theta^2})}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
$$c^2 = a^2 + b^2 - 2ab\cos C$$

Rigid Body (only need 2 points)

Translation

$$\begin{vmatrix} \vec{r}_B = \vec{r}_A + \vec{r}_{B/A} \\ \therefore \vec{v}_B = \vec{v}_A + \vec{v}_{B/A} \end{vmatrix}^0 \text{ and } \vec{a}_B = \vec{a}_A + \vec{a}_{B/A} \end{vmatrix}^0$$

Rotation About Fixed Axis

 $\vec{\omega} = \dot{\theta}$ and $\vec{\alpha} = \ddot{\theta}$ points in \hat{k} direction (in/out of page), same for all points on rigid body.

$$\omega = \frac{d\theta}{dt}, \ a = \frac{d\omega}{dt}$$

After some manipulation (analogous to linear):

$$\omega d\omega = \alpha d\theta, \ \dot{\theta}$$

For constant angular acceleration $\alpha = \alpha_c$, same as linear (but $s \to \theta$, $v \to \omega$, $a_c \to \alpha_c$).

Finding v and a of a point P

$$\begin{vmatrix} \vec{v}_P = \vec{v}_{P/O} = \omega r_{P/O} \ \hat{e_{\theta}} \\ \vec{a}_P = -\omega^2 r \ \hat{e_r} + \alpha r \ \hat{e_{\theta}} \ \text{(or in n-t: } \omega^2 r \ \hat{e_n} + \alpha r \ \hat{e_t}) \end{vmatrix}$$

Vectorially (note that $\vec{\omega} \times \vec{r}_{P/O}$ is $\vec{v}_{P/O}$):

$$\begin{split} \vec{v}_P &= \vec{\omega} \times \vec{r}_{P/O} \\ \vec{\alpha}_P &= \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/O}) + \vec{\alpha} \times \vec{r}_{P/O} \\ &= \vec{\alpha} \times \vec{r}_{P/O} - \omega^2 \vec{r}_{P/O} \text{ (simplified form)} \end{split}$$

Relative Velocity

$$\begin{split} \vec{v}_B &= \vec{v}_A + \vec{v}_{B/A} \\ \vec{v}_B &= \vec{v}_A + \vec{w} \times \vec{r}_{B/A} \end{split}$$

Find ω with $\omega = \frac{|\vec{v}_{B/A}|}{|\vec{r}_{B/A}|} = \frac{|\vec{v}_B - \vec{v}_A|}{|\vec{r}_{B/A}|}$.

Relative Acceleration

$$\begin{split} \vec{a}_B &= \vec{a}_A + \vec{a}_{B/A} \\ \vec{a}_B &= \vec{a}_A + \left[\vec{\alpha} \times \vec{r}_{B/A} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{B/A}) \right] \end{split}$$

Find α with $\alpha = \frac{|(\vec{a}_B)_t - (\vec{a}_A)_t|}{|\vec{r}_{B/A}|}$ Rolling without slip: $\vec{a}_G = \alpha R \ \hat{i}, \ \vec{a}_{cntct} = \omega^2 R \ \hat{j}$

Kinetics

$$\sum ec{F} = m ec{a}_G$$
 and $\sum ec{M}_G = I_G ec{lpha}$

 I_G : rod: $\frac{1}{12}mL^2$ and $I_{end} = \frac{1}{3}mL^2$, disk: $\frac{1}{2}mR^2$, ring: mR^2 , rect. plate: $\frac{1}{2}m(a^2 + b^2)$, rad. of gyra. $(k = \sqrt{\frac{I_G}{m}})$: mK^2

Parallel axis theorem: $I_A = I_G + md^2$

Made by Joe Dai in METO

Work-Energy

$$T = \frac{1}{2}I_{IC}\omega^{2} = \frac{1}{2}I_{G}\omega^{2} + \frac{1}{2}mv_{G}^{2}$$

Work same, except $U_{f,s} = 0$ and $U_M = \int_{\theta_1}^{\theta_2} M d\theta$

Momentum and Impulse

Same principle holds, with below:

$$\vec{G}=m\vec{v}_G,\, \vec{H_G}=I_G\vec{\omega}$$
 and $\vec{H_G}=\sum \vec{M_G}=I_G\vec{\alpha}$

Note: still holds if G replaced with IC or O! Use this for rolling wheel!

Vibrations

Parallel springs: $k_{eq} = \sum k_i$ Series springs: $\frac{1}{k_{eq}} = \sum \frac{1}{k_i} \text{ OR } \frac{k_1 k_2}{k_1 + k_2}$ Period $\tau = \frac{2\pi}{\omega_n}$, Frequency $f = \frac{\omega_n}{2\pi}$ $\sin \theta \approx \theta$ for small θ

General solutions x(t) are as follows:

Undamped Free $(\ddot{x} + \omega_n^2 x = 0)$

 $A\sin(\omega_n t) + B\cos(\omega_n t)$, where $\omega_n = \sqrt{\frac{k}{m}}$, OR $C\sin(\omega_n t + \phi), \ \phi = \tan^{-1}(\frac{B}{A}), \ C = \frac{B}{\sin \phi} = \frac{A}{\cos \phi}$ Amplitude/max disp. is C

Hanging mass: $y_{eq} = \frac{mg}{h}$; pendulums: $\omega_n = \sqrt{g/l}$

Damped Free $(m\ddot{x} + c\dot{x} + kx = 0)$

Check sign of: $(\frac{c}{2m})^2 - \frac{k}{m}$ Crit (= 0): $(A+Bt)e^{\lambda t}$, where $\lambda = -\frac{c}{2m} = -\omega_n$ Overdamp (> 0): $Ae^{\lambda_1 t} + Be^{\lambda_2 t}$ Underdamp (< 0): $De^{-\frac{c}{2m}t}\sin(\omega_d t + \phi)$, where $\omega_d = \sqrt{\frac{k}{m} - (\frac{c}{2m})^2} = \omega_n \sqrt{1 - \zeta^2}, \ \zeta = \frac{c}{c}$

Undamped Forced $(m\ddot{x} + kx = F_o \sin(\omega_o t))$

 $A\sin(\omega_n t) + B\cos(\omega_n t) + X\sin(\omega_o t)$, where

Magnification factor $MF = \frac{X}{F_0/k} = \frac{1}{1 - \omega_0^2/\omega_n^2}$ In-phase (MF>1) if $\frac{\omega_o}{\omega_n}<1$, out-of-phase (MF<0) if $\frac{\omega_o}{\omega_n}>1$, and resonance (VA) if $\omega_o = \omega_n$

Periodic Support Disp. $\delta(t) = \delta_0 \sin(\omega_0 t)$

Obtain x by subtract x(t) and $\delta(t)$ (or vice versa) to get similar to $m\ddot{x} + kx = k\delta_o \sin(\omega_o t)$ $C\sin(\omega_n t + \phi) + X\sin(\omega_o t)$ where $X = \frac{\delta_o}{1 - \omega_o^2/\omega_o^2}$

Rigid Bodies

Use moments: $\sum \vec{M_o} = I_o \vec{\alpha} \rightarrow I_o \ddot{\theta} - \sum \vec{M_o}(\theta) = 0$